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Abstract
This paper presents PARSEC, a high-performance dis-
tributed platform for executing smart contracts at scale.
Our design is generic and supports a wide class of smart
contract runtimes. We implement and test two such run-
times: an expressive Lua-based runtime that we design,
as well as one integrating the Ethereum Virtual Machine
(EVM). Our EVM integration is a drop-in RPC replace-
ment compatible with standard tooling.

PARSEC achieves linear scalability for non-conflicting
workloads, and our evaluation shows up to 118K ERC-20
transactions per second on 128 hosts. We achieve this by
observing that smart contract semantics do not require
materializing a linear transaction history: a more permis-
sive form of ordering, serializability, suffices and supports
a parallel implementation.

This work is part of Project Hamilton, and extends our
previous work on high-performance, centralized transac-
tion processors for digital currency.

1 Introduction
Smart contracts are computer programs that enable multi-
ple parties to agree on terms of execution, and then out-
source that execution to a third party like a blockchain or
external provider. There are millions of smart contracts [6]
in use by tens of millions of users on Ethereum, a popu-
lar platform that uses the Ethereum Virtual Machine, or
EVM, for contract execution. Beyond cryptocurrencies,
several companies are experimenting with permissioned
blockchains that support smart contracts to streamline
business processes [11, 14].

The typical method of executing smart contracts is via a
replicated state machine model—many servers, or nodes,
execute every step of every smart contract to apply to
their local state. This has several downsides: First, it does
not scale well; adding more servers does not improve the
throughput of execution. Second, this limits the computa-
tion model: contracts must be deterministic, and cannot
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directly access external services or randomness. Finally,
this means that contracts and contract execution is public
to all users in the network, barring additional techniques
that improve privacy but come with a cost.

This work introduces PARSEC (Parallel ARchitecture
for Scalably Executing smart Contracts), a platform for
executing smart contracts at scale. PARSEC achieves linear
scalability for non-conflicting workloads. To achieve high
performance, we make the following observations:

• First, many proposed use cases for smart contracts,
like central bank digital currency or securities settle-
ment, do not require decentralization or validation
for contract execution; they either already rely on
a trusted third party to maintain the integrity of the
system, or, because the set of involved parties are
known and regulated institutions, they can use au-
diting or legal and contractual agreements to ensure
non-malicious behavior. Even if this fails, for exam-
ple in the event of software bugs, they can collaborate
to rollback or correct mistakes.

• Second, correct smart contract execution does not
require execution of smart contracts in a linear order;
state must simply reflect an ordered execution, and
contracts should not interfere with each other.

We exploit these observations in PARSEC to create a
new type of smart contract platform that partitions the
state across multiple servers, and runs many smart contract
execution environments (or agents) in parallel. PARSEC
has a distributed runtime, described in §4, that can execute
different types of smart contract virtual machines. Doing
so correctly requires a distributed commit protocol to
handle concurrent accesses to conflicting data.

The key idea behind PARSEC is a simple interface be-
tween the agent and the distributed state. Every client
transaction invoking a contract is executed by an agent
running a virtual machine. Though VMs might be writ-
ten as though they have exclusive access to local state,
we turn this access (correctly) into shared access to dis-
tributed state via a simple primitive we call trylock.
The contract’s state-changing operations will execute as a
distributed database transaction that reads and writes the
shared state.

1



Perhaps surprisingly, we can even run complex execu-
tion environments, like the Ethereum Virtual Machine,
without any modifications. Many Ethereum smart con-
tracts, like Uniswap [4], do not require any changes at
all to work in PARSEC, though some might benefit from
rearchitecting to take advantage of parallelism when ac-
cessing different pieces of data (described further in §7).
This means PARSEC can take advantage of the existing
contracts and developer tooling in the Ethereum ecosys-
tem.

We evaluate PARSEC and show that it can achieve 118K
transactions per second. It appears its performance scales
linearly in the number of shards, so we expect this number
to go up with additional servers.

1.1 Continuation of Project Hamilton
This work was completed in 2022 as part of Project Hamil-
ton, which was a multi-year technical research collabo-
ration between the Federal Reserve Bank of Boston and
MIT’s Digital Currency Initiative.

Previously, we released two architectures for a high-
performance, centralized transaction processor for digital
currency [16, 17]. Both used the UTXO model, in partic-
ular a UTXO Hash Set (UHS) for storing unspent funds
in the transaction processor. In this work, we wanted to
investigate architectures for programmability. While we
can support a limited set of programmable functionality in
the original UHS-based systems, capabilities are limited.
Expanding the programming model of the UHS would
be challenging because it inherits the limitations of the
UTXO model, and even further limits what kind of shared
state is accessible. PARSEC is designed to enable a very
generic programming model and experimentation with
many different smart contract execution environments.
This enables quicker testing of a wide-variety of financial
use-cases without requiring changes to the transaction
format or core transaction processor.

1.2 Contributions and outline
In summary, the contributions of this work are as follows:

• PARSEC, a centralized platform for executing a wide
variety of smart contract virtual machines in parallel

• PARSEC’s design, which uses a simple primitive
called trylock that enables running existing VMs
and contracts that are designed for local execution in
parallel against distributed state, without requiring
much modification,

• An implementation and evaluation which shows that
PARSEC can achieve 118K transactions per second
with average latency under 1.6 seconds on an ERC-
20 transfer workload.1

1https://github.com/mit-dci/opencbdc-tx/tree/trunk/src/parsec

In §2 and §3 we describe the system model and inter-
face for PARSEC. §4 describes two environments, one for
a virtual machine which runs contracts written in Lua,
and a second which runs the EVM. In §5 we describe
PARSEC’s backend and distributed commit protocol. We
evaluate PARSEC in §6, and discuss future improvements
in §7 and related work in §8. §9 concludes.

2 System Model
PARSEC is a distributed platform for running contracts.
Figure 1 shows the high-level architecture of our system.
A client engages with the system via a wallet, which is
software that might run on a mobile device or computer.
Wallets issue transactions which are processed by the
system.

The system is composed of two layers. First, a dis-
tributed runtime called the agent which processes transac-
tions from users by executing contracts, which run inside
virtual machines. A contract’s input is a client-specified
byte string; contract interprets this as a transaction, i.e. a
set of parameters that represent an execution instruction.

Second, a database which stores persistent shared state
for the virtual machines and contracts, providing con-
currency control and atomic database transactions. That
database allows the agent to execute transactions and con-
tracts which might read and write the same data in parallel,
while guaranteeing isolation and atomicity.

We assume that a centralized, trusted entity operates
the system on behalf of users. Neither the agent nor the
database are required to tolerate Byzantine faults, and the
agent might fail at any point during transaction execution.
The database is responsible for implementing safe recov-
ery in the event that an agent fails. For scalability, there
might be multiple distinct agents processing transactions
in parallel.

We assume that the database is a generic key/value
store. It is not required to provide permissioning for con-
tracts, type checking, a query language, or other schema-
like features. The runtime is responsible for protecting the
data store from tampering outside the semantics defined
in contracts. Therefore, wallets always interact with the
system via an agent to enforce contract semantics and
the consistency of any returned values. One could use an
existing ACID-compliant database such as PostgreSQL
or CockroachDB for this purpose, but PARSEC does not
require most of the features provided by those systems.
Instead we implemented our own scalable, distributed,
transactional key-value database with a simple interface
for the agent, described in §3.

3 Data structures and abstractions
When an agent needs to access or modify system state, it
interacts with the broker. In PARSEC, the broker exposes
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Figure 1: High-level system architecture

a clean, high-level interface that is compatible with imple-
menting many kinds of containers in the agent; we use
the same broker-agent interface, with no modifications, to
support both the EVM and our Lua-based VM, the LVM.

In turn, the broker is tasked with translating an agent’s
high-level requests into database transactions to be ex-
ecuted by the database (see Figure 5). The broker is re-
sponsible for providing an atomic interface with the state
and failure recovery. We later explain the underlying dis-
tributed commitment protocol in §5.2.

In detail, the broker exposes the following data struc-
ture and abstract operations to the agent:
Key-value store. The single data structure exposed by
the broker is a key-value store mapping byte arrays to
byte arrays. In practice, keys in this data structure are
serialized account public keys, and the mapped values are
associated smart contract data, e.g., amount of currency
held by an account, smart contract bytecode or internal
state.
The trylock abstraction. The key-value store is ini-
tially empty and accessed via an atomic locking interface
we call trylock. The trylock interface gives the agent
a way to realize transactional access to the key-value store
as follows. Take the key-value store at any time T ; To ac-
cess it, the agent will first make a begin() call which
initializes a database transaction between the agent and
broker (see Step 1 in Figure 2) . Inside the agent, begin()
might or might not be exposed to the smart contract code;
in our agents, this call is implicit and occurs before the
first access to the state.

Afterwards, the agent will make a number of trylock
calls (see Step 2 in Figure 2). Each of these specifies
a key to be read and locked, and the agent responds to
each call with a value currently held by the state at time
T . Importantly, keys (account and contract addresses and
contract state) accessed via trylock can (and, in practice,
will) depend on results of previous trylock calls. The
agent can use trylock to upgrade a previously acquired
read lock to a write.

Finally, the agent responds with a commit call option-
ally specifying new values for keys that this transaction
holds write locks for (see Step 3 in Figure 2). The bro-
ker is responsible for atomically either updating all these

keys with new values or, in case of conflicts, aborting and
leaving the state unchanged.

4 Distributed Runtimes
In this section we describe the two distributed runtimes
we implemented in the agent. We implemented a generic
environment that executes Lua programs and an example
contract which provides account-balance payments. We
also implemented Ethereum transaction semantics, pro-
viding a drop-in replacement for Geth/Infura, compatible
with existing Ethereum tools.

4.1 LVM: a minimal smart contract VM
We now describe LVM, a new, minimal smart contract en-
vironment. LVM smart contracts use the account-balance
data model and are written in Lua, a lightweight embed-
ded scripting language and virtual machine.

In this section, we first describe the data structures LVM
contracts access and use, the LVM transaction format, and
the semantics of their execution. We then explain the
notion of a “root contract,” essential to building systems
in our environment, and analyze properties of LVM smart
contract model. We finish with a detailed description of a
simple LVM contract.

4.1.1 Data structures
The shared state of our smart contract environment is a
global key-value map M in which both keys and values
are arbitrary byte arrays. LVM uses this data structure for
both storing smart contract bytecode and smart contract
state, as follows:

• Smart contract bytecode. Each LVM smart con-
tract is identified by its 32-byte address, chosen at
the time of contract deployment. Contracts are stored
in the key-value map in the usual way: a contract
whose 32-byte address is C, has its bytecode stored
at M[C].

• Smart contract state. LVM smart contracts addi-
tionally use the key-value map for storing their inter-
nal state. By convention, a contract with address C
stores its internal state variable v by using a global
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Figure 2: Interface between agent and broker

map’s key that is a concatenation of C and the vari-
able’s name, i.e., at M[C‖“v”].

It is important to note that the aforementioned names-
pacing convention is not enforced at the execution envi-
ronment layer but rather is a responsibility of the smart
contracts deployed in the system. Our system enforces
this separation and other security through a flexible and
generic mechanism, which is itself based on smart con-
tracts. Namely, the system is initialized with a single smart
contract we call the “root contract,” and this root contract
is given the necessary tools to enforce desired system
security properties. We explain this in §4.1.3.

4.1.2 Transaction semantics
A transaction tx := (C,p) comprises two parts: a 32-byte
address C of the contract to be executed, and transaction
payload p. Each LVM contract is a single-argument Lua
function and has the flexibility and responsibility to inter-
pret p according to its self-defined ABI.

To execute a LVM transaction, the smart contract envi-
ronment will first look up the contract bytecode B in the
key-value map, B := M[C]. If this look-up is successful
(i.e., the smart contract exists), LVM executes the Lua
bytecode on the described payload, i.e., computes B(p).
To enable the contract to interact with the system state,
LVM agent exposes our trylock abstraction (§3) to the
contract and uses contract’s return value to update the
system state, as we now explain.

Each transaction executes within its own coroutine
and the contract must yield to the agent to acquire locks
on keys for shared data. Whenever a contract calls the

coroutine.yield function provided by the Lua envi-
ronment, the contract yields its execution to the agent.
The agent interprets the single coroutine.yield ar-
gument as a key, and calls trylock to obtain a write
lock on the requested key and resumes execution of the
contract once the lock is acquired. The return value of
coroutine.yield(x) inside the contract is the value
M[x] that agent obtained in its trylock call.

Finally, the contract’s return value is an update map U .
This Lua table maps keys k, each of which the contract
has previously requested a lock for, to their new values v.
The LVM agent uses U in its commit call to the broker,
requesting an atomic update that sets all M[k]← v. If
the broker confirms commit, this results in a successfully
executed transaction and a failure otherwise.

4.1.3 Root contract
In LVM authentication, access control, resource limits,
and other security properties are a responsibility of smart
contracts deployed in the system. This is in contrast to
other smart contract systems where these properties are
enforced by the execution environment2 We design our
smart contract security perimeter by leveraging Lua’s abil-
ity to execute a function’s bytecode while simultaneously
overriding the function’s environment and introspecting
its execution, as we now describe.

In our design, the key-value store is initialized with

2For example, EVM transaction semantics require transfers to bear
digital signatures, execution semantics forbid a contract from directly
accessing another contract’s storage, and gas requirements provide a
protection against resource exhaustion.
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a single trusted root contract R, and all other contracts
are deployed and executed through the root contract. In
fact, the root contract will enforce that only the 32-byte
long key (i.e. the smart contract address) in M is that of
R itself. This way, the only transactions accepted by the
execution environment are those calling R, and all user
smart contract transactions need to be proxied through R.

The root contract namespaces user smart contracts dur-
ing deployment and execution. When deploying a contract
with address C, R stores its bytecode at M[contract C].
To execute a user contract C with payload p, one submits
a transaction tx := (R,(call,C,p)), i.e., calling R with
payload (call,C,p). The root contract then provides an
isolated execution of C as follows:

1. R calls coroutine.yield("contract " + C)
to look up C’s bytecode.

2. R uses Lua built-ins load, setmetatable, and
setfenv to obtain a Lua function f matching C’s
bytecode for which the lexical environment is over-
ridden to wrap coroutine.yield (see below).

3. R calls f (p), executing the sandboxed smart contract
on the payload p. When f returns its update map U ,
R returns a sanitized update map U ′ to the execution
environment.

The above isolated execution template is generic and can
support a variety of security mechanisms. For example, to
completely isolate contracts from each other, R can wrap
coroutine.yield(k) to prefix keys with the contract’s
address, so that C’s access to M[k] is always redirected to
M[storage C k]; the corresponding update map saniti-
zation would simply prefix all keys with “storage C ”.

In addition to overriding the user contracts’ interface
to trylock, the root contract can also enforce execution
time limits through Lua’s debug.sethook interface.3

That way, the root contract would get a callback every
N instructions and could implement a simple version of
“gas”. Finally, the root contract can also provide addi-
tional convenience functions to user contracts, such as
authenticated access to shared state, or digital signature
authorization of transactions.

We note that, while expressive and generic, root
contract-based deployments are not the only ones possible
in our system. For example, the system could be initial-
ized with a small number of trusted contracts (e.g., the
self-contained account-balance transfer contract in Sec-
tion 4.1.5) and no “wrapping” root contract. Such usage
would benefit from our efficient runtime and the ability to
express payment flows in a high-level language, as well

3A complete resource control and sandboxing solution would neces-
sarily implement parts of it in native code. For example, the orchestration
infrastructure could isolate an agent in a Linux control group (cgroup),
and apply CPU, memory, I/O, and other limits.

as simplify security audits, as it avoids reasoning about
complex interactions between different smart contracts.

4.1.4 Properties of LVM environment
We now briefly remark on a number of features that our
execution environment possesses.

Native parallelism. To support the efficient parallel ex-
ecution of transactions within an agent, LVM leverages
Lua coroutines. Since obtaining data from shards can take
multiple milliseconds, this allows the agent to schedule
other transactions without requiring multithreading, and
makes the agent capable of processing a greater number
of transactions in parallel in a single thread.

Upgradeability. In our design, many security features are
meant to be implemented through an appropriate root con-
tract, as execution environment enforces minimal trans-
action semantics. As security properties are expressed as
Lua smart contract checks, these security features can be
upgraded (as smart contract upgrades) while the system
is running, without making any changes to the underly-
ing execution environment (i.e., no agent code needs to
change).

Extensibility. While our contracts are written in Lua, they
are not limited to using Lua-only code. An agent can
be linked with highly-optimized compiled versions of
common primitives (e.g., cryptographic operations like
hashing or digital signature verification) and expose them
to Lua contracts as “precompiles.” Looking ahead, our
example contract relies on such a precompile: check sig

wraps a call inside the efficient secp256k1 library [8]
which is written in C.

Interoperability. Finally, our design is not limited to con-
tracts written in Lua: it would work equally well with
smart contracts written in any other language through the
agent appropriately exposing our trylock interface. An
agent could support multiple smart contract languages in
parallel and dynamically dispatching each smart contract
to its interpreter. In fact, this design could also support
contracts written in native code, and sandboxed via a sys-
tem like NaCl [23].

4.1.5 An example contract: payments
In this section, we describe an example Lua account-
balance contract which implements Ethereum-style
account-balance transactions. The contract performs
the necessary operations to atomically update account
balances while preventing unauthorized payments and
double-spends.

Recall that transactions enter our system via agent’s
TCP endpoint that wallets connect to and submit trans-
actions for processing. The agent then calls the contract
with the user-provided payment parameters, and returns
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1 function (param)
2 from, to, value, sequence, sig = string.unpack("c32 c32 I8 I8

c64", param)↪→
3
4 function get_account_key(name)
5 account_prefix = "account_"
6 account_key = account_prefix .. name
7 return account_key
8 end
9

10 function get_account(name)
11 account_key = get_account_key(name)
12 account_data = coroutine.yield(account_key)
13 if string.len(account_data) > 0 then
14 account_balance, account_sequence
15 = string.unpack("I8 I8", account_data)
16 return account_balance, account_sequence
17 end
18 return 0, 0
19 end
20
21 function pack_account(updates, name, balance, seq)
22 updates[get_account_key(name)] = string.pack("I8 I8",

balance, seq)↪→
23 end
24
25 function update_accounts(from_acc, from_bal, from_seq, to_acc,

to_bal, to_seq)↪→
26 ret = {}
27 pack_account(ret, from_acc, from_bal, from_seq)
28 if to_acc ˜= nil then
29 pack_account(ret, to_acc, to_bal, to_seq)
30 end
31 return ret
32 end
33
34 function sig_payload(to_acc, value, seq)
35 return string.pack("c32 I8 I8", to_acc, value, seq)
36 end
37
38 from_balance, from_seq = get_account(from)
39 payload = sig_payload(to, value, sequence)
40 check_sig(from, sig, payload)
41 if sequence ˜= from_seq then
42 error("incorrect sequence number")
43 end
44
45 if value > from_balance then
46 error("insufficient balance")
47 end
48
49 if value > 0 then
50 to_balance, to_seq = get_account(to)
51 to_balance = to_balance + value
52 from_balance = from_balance - value
53 else
54 error("value must be positive")
55 end
56
57 from_seq = sequence + 1
58 return update_accounts(from, from_balance, from_seq, to,

to_balance, to_seq)↪→
59 end

Figure 3: Lua code implementing Ethereum-style account-balance trans-
actions.

either a success status or error message to the user via the
socket once execution has completed.

We now provide a step-by-step explanation of how
the contract works, emphasizing the locking mechanism,
security measures, and support for parallel execution.

The contract begins by unpacking the parameters (line
2), including the sender’s public key, recipient’s public
key, amount, sequence number, and signature. It uses the
string.unpack function to extract the necessary val-
ues from the byte string.

To support the efficient parallel execution of transac-
tions within an agent, the Lua environment leverages
coroutines. Each transaction executes within its own
coroutine and the contract must yield to the agent to ac-
quire locks on keys for shared data. Since obtaining data
from shards can take multiple milliseconds, this allows
the agent to schedule other transactions without requir-
ing multithreading, which makes the agent capable of
processing a greater number of transactions in parallel.

The contract retrieves the sender and receiver’s account
data using the coroutine.yield function (on lines
38 and 50 respectively), provided by the Lua environment.
This function yields execution to the agent which calls
trylock to obtain a write lock on the requested key and
resumes execution of the contract once the lock is ac-
quired. It unpacks the raw bytes returned by the function
into the balance and sequence number for the account
(lines 14 and 15). If the destination account does not exist,
the deserialization process detects this and returns a new
account (lines 13 and 18).

To ensure secure payments, the contract employs sev-
eral measures. First, the check sig function, provided
by the Lua environment, verifies the cryptographic sig-
nature of the transaction payload against the sender’s
public key, ensuring its authenticity (line 40). Second,
it checks that the sequence number in the transaction
matches the sender account’s current sequence number,
and increments the sequence number if the transaction
completes (lines 41 and 57). This prevents replay attacks
where an attacker resubmits an old transaction. Finally,
the contract checks if the sender has sufficient balance
to perform the transaction, preventing balance attacks
where a sender attempts to spend more than their avail-
able balance (line 45). If the contract raises an error, the
transaction execution is aborted and the agent releases
any locks acquired by the contract.

If the checks above succeed, the contract updates the
sender and receiver account balances (lines 51-52), and
packs the account data back into a byte string (lines 25-
32). At the end of execution, the contract returns a map
of updated account keys and values (line 58). The agent
writes the updates back to the shards as part of an atomic
commit, ensuring the integrity of the account data. Since
the system provides deadlock resolution via preemption,
the contract can be interrupted by any lock or after the
contract returns, and the agent will have to restart it from
scratch.

4.2 EVM
We also implemented an agent that supports EVM-
compatible transactions in our parallel execution environ-
ment. Our implementation provides an Ethereum transac-
tion interface, and is a drop-in RPC replacement compati-
ble with many existing Ethereum tools, such as Hardhat
and Truffle.

Our implementation realizes the Ethereum transaction
semantics and consists of two parts. First, it uses a li-
brary implementing the Ethereum Virtual Machine; in
our agent we used evmone [1]. Second, to integrate the
virtual machine, we implement the EVM host interface
using trylock and provide the required system calls for
the EVM, described later in this subsection.

The agent exposes an HTTP JSON-RPC endpoint
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through which users interact with the system that provides
the subset of the Geth/Infura API required for process-
ing transactions. The agent does not provide auxiliary
functions provided by Geth, such as wallet, debugging, or
contract development RPCs. The HTTP endpoint handles
RPC requests from users and dispatches the relevant call
to the host interface, which might invoke an instance of
the EVM, depending on the operation.

As mentioned above, integrating EVM requires imple-
menting the EVM host interface to provide several system
calls specific to Ethereum’s transaction semantics. Our
host interface implementation provides these methods
using our atomic commitment protocol. We devote the
rest of this section to a detailed description of our host
interface and its integration in our agent.
Setup. When the agent receives a raw Ethereum transac-
tions submitted via eth sendRawTransaction it exe-
cutes the transaction as follows. The agent creates a new
instance of the host interface for each transaction contain-
ing specific context information such as the timestamp,
gas limit and origin account. Agent uses a thread pool to
execute transactions in parallel. This is because the EVM
implementation we used does not support cooperative
multitasking, and so each of the host interface methods
are blocking. During the execution the agent also caches
keys that have been locked or modified and provides a
map of updated keys and values to be committed once
execution has completed.
Execution. After setting up the host interface, the agent
executes the transaction as follows. First, the agent dese-
rializes raw transaction and checks its signature. It then
acquires a write lock on the origin account metadata and
checks the current account nonce matches the one cited in
the transaction. It locks a key for the transaction receipt,
before constructing an evm message and calling call

(described below) on the host interface instance created
for the transaction. The agent waits for call to return,
retrieves the map of any keys that have been modified,
generates an Ethereum transaction receipt and commits
the changes and receipt before responding to the user. The
user can retrieve the transaction receipt via the standard
eth getTransactionReceipt RPC.
Host interface. Our implementations of the necessary
host interface APIs (see Figure 4) work as follows:

• call implements the core Ethereum transac-
tion semantics including charging gas, transfer-
ring funds between accounts, deploying new con-
tracts, and invoking the EVM if necessary. call
uses get code size to determine if the destina-
tion account is a contract and creates an instance
of the EVM to call with the bytecode retrieved via
copy code. If the transaction is deploying a new
contract, call will invoke the EVM which returns

account_exists(address) -> bool
get_storage(address, key) -> bytes32
set_storage(address, key, value) -> storage_status
get_balance(address) -> uint256
get_code_size(address) -> uint
get_code_hash(address) -> bytes32
copy_code(address, code_offset, buffer_data*, buffer_size) -> uint
selfdestruct(address, beneficiary_address)
call(evm_message) -> evm_result
get_tx_context() -> evm_tx_context
get_block_hash(height) -> bytes32
emit_log(address, data*, data_size, topics[], topics_count)
access_account(address) -> access_status
access_storage(address, key) -> access_status

Figure 4: The EVM host interface

the contract bytecode, and create a new account with
the bytecode.4

• account exists, get storage, get balance,
get code size, get code hash and copy code

are implemented using trylock either by acquiring
a new read lock on the key where the relevant
information is stored, or retrieving from a local
cache if the data has previously been referenced.
Our implementation uses key prefixes to separate
account metadata, contract bytecode and account
storage elements in the shared state.

• access account and access storage track
whether accounts or storage elements have previ-
ous been accessed by a contract, which affects the
gas cost for some operations in the EVM.

• set storage and selfdestruct acquire write
locks on the relevant data and cache the changes
locally, to be committed later by the agent.

• Since there are no blocks in our system,
get block hash always returns zero.

4.3 Discussion
4.3.1 Non-deterministic runtimes
Since the agent and broker do not have to be replicated,
the distributed runtime does not have to be deterministic.
Runtimes can take non-deterministic actions like gener-
ating random numbers or referencing data from external
sources like the Internet. Furthermore, runtime execution
is not public, meaning that applications can store secrets,
like private keys, as long as they trust the system operator.
Secret storage and random number generation could be
handled by HSMs to help guard against side-channel at-
tacks. This allows for a richer set of program semantics for
applications executing in the runtime. For example, a con-
tract could sign transactions for other systems. This might
eliminate the need for third-party bridges to implement
interoperability with other assets.

4Contract deployment transactions in Ethereum do not contain the
new account bytecode directly, but rather a generator program which is
executed in the EVM which returns the new bytecode to be deployed.

7



4.3.2 Inter-runtime communication

Since our backend is a generic database, multiple dis-
tributed runtimes with distinct semantics can operate si-
multaneously, with serialization enforced by the database.
For example, one could deploy the EVM environment at
the same time as an implementation of the Bitcoin data
model and transaction format. Each agent implementa-
tion could use key prefixes to separate the state for each
runtime environment. Both environments could provide
a method to transfer funds between Bitcoin-like UTXOs
and Ethereum-like account balances, within the transac-
tion semantics of each environment. This is useful because
different data models are better suited for certain applica-
tions, and the system operator is not required to choose a
single runtime.

4.3.3 Runtime sandboxing

The database does not provide permissions for different
elements of the database and relies on the runtime en-
vironments to isolate user-provided applications. In the
Ethereum environment, sandboxing is provided by the se-
mantics of the EVM; contracts can only access their own
storage, and interaction between contracts is only possible
via their respective ABIs. Futhermore, the Ethereum envi-
ronment provides resource limiting via gas, and the EVM
does not allow contracts to interact with the host system.
In contrast, generic VMs like Lua, Javascript or Python
do not provide any sandboxing by default. The system
operator would have to either closely audit VMs, or imple-
ment their own resource limits, isolation, and sandboxing
for each VM.

5 Distributed transactional key/value store
Many contracts can be written so that transactions access
independent keys; therefore we’d expect to see a perfor-
mance benefit from partitioning the datastore across many
servers. Doing so safely requires a distributed commit
protocol so that we can execute many transactions and
contracts that might read or write the same data in parallel.

There are many existing systems that provide dis-
tributed transactions on a sharded key/value store. We
do not evaluate them in this work. We implemented our
own and describe how it works here. Any such system
should support distributed transactions and client failure
recovery. It should not assume keys are known ahead of
time, so it would need to provide deadlock detection. In ad-
dition, it should provide sharding to scale non-conflicting
workloads. One could use a strongly consistent database
like PostgreSQL or CockroachDB, instead of our custom
backend, to provide the functionality for trylock. An im-
portant piece of future work is evaluating the performance
of our approach versus existing systems.

5.1 Overview
Agents interact with the state through a broker, as de-
scribed in §3. This section discusses how we implement
trylock. The state is stored in a key/value database, par-
titioned across a set of locking shards. Locking shards
implement a set of functionality to safely and durably
process distributed transactions. A broker uses a direc-
tory service to locate the appropriate shard for a given
key; we do not discuss the implementation of this service,
but assume it is correct and available [9, 13]. A broker
communicates with a replicated ticket machine to obtain
monotonically increasing sequence numbers to assign to
distributed transactions. A broker and shards use tickets to
uniquely identify distributed transactions when providing
concurrency control. Tickets are used for recovery and
prioritization in deadlock resolution between conflicting
transactions. Figure 5 shows an overview of the architec-
ture with an agent that is running the EVM.

5.2 Executing database transactions
The database transaction commit protocol uses two-phase
locking (2PL) to access keys. A broker coordinates the
protocol. Figure 6 shows the steps of the commit protocol.
At some point during transaction execution, the agent calls
begin() in its broker. The broker requests a ticket from
the ticket machine and assigns the ticket number as the
transaction ID for the database transaction.

As the agent executes a contract (described in §4), it
will use trylock to read and write keys. For each read
or write, the broker takes out read and write locks on
the appropriate shards (found through the directory ser-
vice) using the database transaction’s ticket number. It
retrieves keys from the shards for reads and buffers writes
locally. Upon receiving a request for a read or write lock,
a shard might (1) grant the lock (2) wait because another
transaction has a conflicting lock or (3) return pre-empt
(described below). Shards record locks that are granted
along withe ID of the broker that requests them, and the
ticket number. Locks can be upgraded from read to write.

After all reads and writes, the agent calls commit()
and the broker begins the commit protocol, which is two-
phase commit. First, it calls prepare() on all relevant
shards, including all the new values for keys that were
written. Assuming all shards respond affirmatively, the
broker then calls commit() on each shard.

Once a commit() is received by any shard, the trans-
action will (eventually) complete successfully—the shard
will release locks and apply writes. Afterwards, the bro-
ker calls discard() to clean up any state the shards are
storing about the database transaction.

The broker might rollback() the database transac-
tion if the executing agent or contract fails, or if it does
not receive successful responses to prepare() from
all shards. This releases all locks without applying any
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Figure 5: PARSEC Architecture Diagram

Figure 6: Transaction Lifecycle

writes. The broker still needs to call discard() after a
rollback().

Optimizations. Agents actually request batches of tickets
from the ticket machine, so the broker can request a ticket
locally instead of talking to the ticket machine for every
database transaction. In addition, begin() is implicitly
called the first time an agent calls trylock.

5.3 Detecting deadlocks
Note that we do not know what keys a transaction or con-
tract might access before it is executed; we also cannot
mandate that keys are taken out in a certain order. Since
we use 2PL with two-phase commit (2PC), we must have a
way of resolving deadlocks. PARSEC uses ticket numbers
with the Wound Wait algorithm to resolve deadlocks [21].
Wait Die is more efficient, but less fair; it doesn’t guaran-
tee that all transactions will eventually complete if there
is heavy lock contention. So if PARSEC used Wait Die, an
adversary could starve honest transactions by continually
issuing transactions which contend on heavily used keys.

Ticket numbers are used as timestamps in Wound Wait.
To recap, if a database transaction with a lower ticket
number attempts to acquire an already locked key, the
shard will pre-empt the higher-ticket database transaction,
which it will discover when its broker either attempts to
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call prepare() or tries to acquire another lock on the
same shard. If a broker discovers its database transac-
tion has been pre-empted, it will rollback(); the agent
will restart execution of the transaction, using the same
ticket number. The shard will not pre-empt a database
transaction for which it has already started processing
prepare().

5.4 Fault Tolerance
Each shard runs in a replicated state machine to tolerate
individual shard server failures; in our implementation we
use Raft. The ticket machine is also replicated using Raft.
Brokers are responsible for either cleaning up or finishing
database transactions that might have been interrupted
due to failures: We assume brokers are managed by an
orchestration layer which ensures (1) each broker has a
unique ID, (2) at most one broker with a given ID is run-
ning, and (3) eventually a broker with a given ID will run.
Shards store information about database transaction state,
but rely on the appropriate broker to either finish commit-
ting partially committed transactions, or to rollback failed
database transactions that have not yet begun to commit,
and clean up state.

When a broker is restarted, it asks all of the shards
for information on any outstanding database transac-
tions with its broker ID and their state. For any database
transactions that are committed on all relevant shards, it
calls discard(). For any where at least one shard is
committed, it calls commit() on the remaining shards.
For any other outstanding database transactions it calls
rollback().

Note that because brokers are not run in a replicated
state machine, and restart any database transactions that
have not yet begun to commit, agents can have non-
deterministic functionality.

6 Evaluation
For benchmarking we deployed the PARSEC codebase in
Amazon Web Services (AWS) on EC2 virtual servers us-
ing the c5a.large (2vCPU, 4GB RAM) instance type. We
ran the system components in three geographical regions,
Virginia (us-east-1), Ohio (us-east-2), and Oregon (us-
west-2). Raft cluster leaders, agents and transaction load
generators were located in the Virginia region. Shards
were replicated by a factor of three, with the followers
located in the Ohio and Oregon regions.

We evaluated how uncontended ERC-20 transaction
throughput using the EVM scaled when increasing the
number of shards. Our workload consisted of payments
between a fixed set accounts managed by ERC-20 token
contracts. We implemented the ERC-20 token for the
benchmark using the OpenZeppelin examples, which pro-
vides payments between accounts with a pre-minted bal-
ance. Each load generator deployed an ERC-20 contract

Figure 7: PARSEC Shard Scaling

and generated back and forth payments between 3072
randomly selected accounts in the contract. The load gen-
erators pipelined the transactions for parallelism, while
ensuring that none of their in-flight transactions involved
conflicting accounts. Each load generator was paired with
an agent and sent signed and serialized Ethereum transac-
tions calling the ERC-20 contract with the relevant param-
eters. The load generator waited for the agent to return the
transaction receipt, which it used to confirm the transac-
tion completed successfully, and measure the transaction
latency.

We performed experiments for configurations of our
system with shard cluster counts in powers of 2 from
1 through 128. For each shard count we ran multiple
benchmarks, increasing the number of load generators
and agents to find the peak average throughput. The load
generators recorded the timestamp and settlement delay
for each transaction. This data was aggregated and used
to calculate the average transaction throughput and the
latency distribution for each experiment.

Figure 7 shows how the peak average throughput scales
with the number of shard clusters. The plot shows that the
peak average transaction throughput scales linearly and
that PARSEC is capable of 118K transactions per second
with 128 shards. We believe our system would continue to
scale with additional shards, as acquiring ticket numbers
from the ticket machine should not be a bottleneck due to
batching. Intuitively, our uncontended ERC-20 workload
scales linearly because balances for different ERC-20
accounts are stored in different keys (even if they use the
same contract), the the number of keys locked by each
transaction is fixed, and the keys are uniformly distributed
across the shards. Our EVM implementation uses read
locks to allow multiple transactions using the same ERC-
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Figure 8: PARSEC ERC-20 Throughput

20 contract to lock the contract code and account metadata
keys in parallel. Since the two accounts in a pending
transaction are guaranteed by the load generators not to
conflict, no transaction is ever pre-empted and forced to
retry.

Figure 8 shows how the average transaction throughput
compares to the average latency and tail latency for each
of the experiments in the 128 shard cluster configuration.
Our system shows low average and tail latency in a geo-
replicated configuration. The average transaction at peak
throughput completed in under 1.6s and tail latency was
under 3.5s. The ERC-20 transactions in our workload
using the OpenZeppelin implementation serially lock 8
distinct keys during execution. The contract acquires locks
on the following keys in order:

1. Sender account metadata (write)

2. Transaction receipt (write)

3. Destination account code (read)

4. Sender ERC-20 account balance (read)

5. Destination account metadata (read)

6. Sender ERC-20 account balance (read→write)

7. Destintaion ERC-20 account balance (read)

8. Destination ERC-20 account balance (read→write)

If the keys locked by a contract call were known ahead of
time, latency could be improved by pipelining and lock-
ing the keys in parallel rather than blocking for each lock

operation. One could also edit the host interface imple-
mentation to eagerly take out write locks on EVM storage
keys when they are read to avoid two lock upgrades in
the above example. This is possible with the existing
Ethereum transaction semantics using EIP-2930 [3], but
requires extra implementation from the user’s wallet, and
is not currently implemented by our runtime.

7 Future Work
In this section, we outline potential areas for future re-
search and improvement of our system.

BFT semantics. One avenue for future exploration is the
investigation of Byzantine Fault Tolerant (BFT) semantics
for our architecture. While our current system operates
under Crash Fault Tolerant (CFT) semantics, which as-
sume benign faults, incorporating BFT semantics would
enhance the system’s resilience against malicious nodes.
Research is needed to explore how to modify our system
to support BFT semantics while maintaining performance
and scalability.

Optimizing smart contracts for more parallel execution.
Our system allows for parallel execution of transactions,
providing increased scalability and throughput. However,
many smart contracts in Ethereum assume serial execu-
tion in a blockchain environment, and so aren’t designed
to benefit from this parallelism: They rely heavily rely
on shared state. Further work is needed to improve the
scalability of these contracts and determine how these con-
tracts can be redesigned to minimize shared state or utilize
batching techniques. Exploring alternative implementa-
tions that maximize parallel execution would enhance the
overall efficiency of our system by avoiding conflicting
transactions where possible.

Enhanced deadlock resolution algorithm. As described in
§5, our current implementation employs a simple Wound
Wait deadlock resolution algorithm. However, given the
high volume of conflicting transactions targeting popular
accounts or contracts, the system may benefit from a more
sophisticated deadlock resolution algorithm. Future work
could focus on designing and implementing an enhanced
deadlock resolution mechanism that can handle the scale
and complexity of conflicting transactions, particularly in
scenarios where smart contracts rely heavily on shared
state.

Evaluating existing distributed databases. Another av-
enue for future research is the evaluation of existing
geo-distributed databases as a potential replacement for
our custom key-value-based backend. Databases such as
Google Spanner, CockroachDB, and YugabyteDB offer
transactional SQL interfaces and are specifically designed
to provide strong consistency in geo-distributed scenarios.
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By substituting our custom backend with a proven geo-
distributed database, we can leverage the rich features
and optimizations that these databases offer, including
built-in transaction management, automatic sharding, and
replication. This transition could potentially simplify the
overall architecture and reduce the maintenance overhead
associated with supporting a custom backend.

8 Related Work

Related work falls into two categories: techniques to scale
smart contract execution in a decentralized setting, and
distributed runtimes designed to execute applications at
scale in a centralized setting.

Scalable smart contracts. The scalability of Ethereum
and other decentralized smart contract platforms is limited
in part because they rely on a decentralized model where
every full node needs to execute and validate all smart
contracts, deterministically.

There have been many proposals to address scaling the
EVM: one technique is to move transactions and compu-
tations off of the main chain and onto a layer 2, whether
via state channels or rollups [15,18,19]. These techniques
vary in how much performance improvement they can get,
and sometimes change security guarantees to require live-
ness for correct execution. It can also be more challenging
to write smart contracts in this paradigm, especially ones
that might cross multiple channels or rollups. There have
been many designs to better parallelize the execution of
smart contracts within a validating server [20]. These tech-
niques might help improve PARSEC’s agent performance,
but PARSEC can get scalability with additional servers,
which those systems cannot.

Many systems have investigated sharding, either data
or contract execution, so that not every node in the system
needs to execute every contract. In Hyperledger [7], nodes
execute contracts in parallel optimistically, like agents in
PARSEC. However, Hyperledger still eventually sequences
results through a single consensus instance, which limits
scalability and performance. Like PARSEC, systems like
Chainspace [5] shard smart contract execution and use a
distributed commit protocol to avoid a central sequencing
step. They still get much lower performance than PARSEC.
Note that these systems all provide a feature PARSEC does
not, which is public verifiability.

Distributed runtimes. There is a lot of work in the dis-
tributed systems literature which enables applications to
run in a distributed setting against shared data [10, 12,
22, 24]. PARSEC takes inspiration from these systems to
design a platform for a new use case, executing smart
contracts in different types of virtual machines.

9 Conclusion
Generic programming architectures for financial transac-
tions usually operate in decentralized environments. This
constraint limits both their scalability and the capabilities
the virtual machine can support.

Our research presents a centralized scalable architec-
ture capable of supporting generic virtual machines. We
find that operating centrally and sharding the state has
significant scalability advantages.

Our open source implementation can run both the
Ethereum Virtual Machine as well as smart contracts writ-
ten in Lua on a scalable datastore in an administratively
centralized context. Because we don’t have to wait for
decentralized consensus, a single execution of a smart
contract is enough for validation, creating a more efficient
environment. While most workloads should scale linearly,
workloads that contend on a low number of keys have
limits.

PARSEC is open-source and slated for inclusion in
OpenCBDC [2]. This release enables a system which
supports scalable testing of a wide variety of financial use
cases without modification of the core platform. Policy-
makers and the general public are now able to experiment
with cutting edge “off the shelf” financial applications in
a scalable architecture.
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