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Abstract
Over 80% of central banks around the world are inves-
tigating central bank digital currency (CBDC), a digital
form of central bank money that would be made available
to the public for payments. We present Hamilton, a trans-
action processor for CBDC that provides high throughput,
low latency, and fault tolerance, and that minimizes data
stored in the transaction processor and provides flexibil-
ity for multiple types of programmability and a variety
of roles for financial intermediaries. Hamilton does so
by decoupling the steps of transaction validation so only
the validating layer needs to see the details of a transac-
tion, and by co-designing the transaction format with a
simple version of a two-phase-commit protocol, which
efficiently applies state updates in parallel. An evaluation
shows Hamilton achieves 1.7M transactions per second
in a geo-distributed setting.

1 Introduction
Central banks are increasingly investigating general-
purpose central bank digital currency (CBDC), a digital
currency that would be broadly available to users mak-
ing retail payments, could provide interoperability and
programmability depending on how it is designed, and,
because it would be a direct liability of the central bank,
reduces risk [7, 8, 14, 15, 19, 22, 23, 24, 37, 47, 65].

Figure 1 summarizes the different properties of a
CBDC as compared to other forms of payment instru-
ments [9]. A CBDC could help address public pol-
icy objectives such as ensuring public access to cen-
tral bank money, fostering payment competitiveness and
resilience, supporting financial inclusion, and offering
privacy-preserving digital payments [3, 7, 15, 42, 70].

Technical designs for CBDC vary depending on spe-
cific policy requirements and goals. For example, a CBDC
could provide low value payments in an anonymous,
peer-to-peer fashion, or be distributed and accessed only
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through accounts at approved financial institutions. To
better inform policy discussions, central banks are rec-
ognizing the importance of technical experimentation in
understanding the implications and trade-offs of different
CBDC models and other policy choices. Importantly, the
feasibility, operating performance and impact of different
CBDC policy choices are dependent upon the technical
design of the underlying transaction processor.

This paper presents a collaboration with a major cen-
tral bank in the design of Hamilton, a high-performance
transaction processing system flexible enough to support
experimentation with different choices around data stor-
age, programmability, and intermediation. Hamilton pro-
cesses payments from users (or financial institutions) who
address and sign transactions using cryptographic keys
stored in digital wallets. Wallets submit transactions to the
Hamilton transaction processor to move unspent funds—a
representation of money containing an amount and the
rules required to spend it (in our case, a public key indicat-
ing ownership). Our initial goals (set by the central bank)
were a centralized transaction processor for CBDC with
high performance and geo-replicated resiliency. Three
additional goals emerged within the collaboration:

Intermediary and custody flexibility. An open question
in CBDC design is that of the role of the central bank
and other intermediaries, and determining how (if at all)
CBDC access can be moderated. These roles will likely
vary by jurisdiction, due to policymaker decisions and
consumer preferences. Currently, people who want to dig-
itally store funds and make payments must open accounts
with financial institutions or payment service providers
which are linked to the identity of the owner and are re-
sponsible for processing transactions on behalf of their
customers, interfacing with payment networks, and safe-
guarding customer funds. In contrast, cash can be held
directly by the public and used to conduct transactions
without the need for a financial institution to process the
payment on their behalf. A CBDC could be designed to
offer similar functionality to cash and provide users the
ability to spend their own funds without the need for an
account provider or custodian to generate transactions,
it could be designed more like existing digital payment
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Figure 1: Table describing the properties of various monetary instruments, summarized from Graph 3 in [9].

systems, or it could even support a combination of the
two models [17].

Interoperability and programmability. Many payment
processor systems provide high throughput and low la-
tency, but unfortunately, they generally provide limited
application programming interfaces (APIs) and do not
natively interoperate. For example, if a Venmo user wants
to pay a user who only has Square Cash, they would need
to transfer their funds outside the application into bank
accounts and send the money via traditional banking rails
(inside the United States using ACH or FedWire; across
borders, even in the same currency, using SWIFT and
correspondent banking), which incurs bank and applica-
tion fees and could take days to complete. Central bank
Real-Time Gross Settlement Systems (RTGS), or instant
payment systems, help reduce interoperability latency but
do not preclude the requirement for multi-step transfers
between applications and bank accounts (where fees are
charged) or provide interoperability and programmability,
especially between payment applications. Contrast these
systems with cryptocurrencies which do not scale well but
natively provide interoperability and programmability.

Preserving privacy and minimizing data retention.
There is strong user demand for financial privacy [37]
and central banks would prefer not to collect and store
user-identifying information or sensitive transaction de-
tails.
Challenges. Building Hamilton to achieve these goals re-
quired addressing the following challenges. First, we had
to build a flexible platform that could support multiple de-
signs without explicit policy requirements or well-defined
tradeoffs. For example, it is unclear what balance to target
between end-user privacy and data storage requirements
for users at the central transaction processor. We take a
layered approach with a design where additional function-
ality can be built outside the core transaction processor.
Our design supports a range of intermediary roles includ-
ing one where users custody their own funds. Hamilton
does not store personally identifiable information (PII),
transaction addresses or amounts in the core of the system.

The second challenge is in providing strong consis-
tency, geographic fault tolerance, high throughput, and
low latency, all with a workload that consists of 100%
read/write, multi-server transactions. Since Hamilton is
unaware of the mapping between users and unspent funds,
we cannot rely on user locality for partitioning, which is
often exploited by traditional database systems to make
workloads predominantly single-partition transactions.

Key ideas. We address these challenges in Hamilton
by carefully co-designing the transaction format, data
model, and distributed transaction commitment proto-
col to achieve the above goals while getting good per-
formance. This involves three parts: First, we decouple
transaction validation from fund existence checks; only
user wallets and a validating layer see transaction details.
Hamilton only ever stores funds as opaque 32 byte hashes,
in an Unspent funds Hash Set, or UHS [41] (§3.3). This
hides details about the funds (like amounts and addresses)
from the UHS storage, reduces storage requirements, and
creates opportunities to improve performance, described
below.

Next, we next create a UHS-designed transaction for-
mat (§3.4), which is extensible and secure against double
spends, inflation attacks, replay attacks, and malleability,
and also has the benefit of supporting future layer 2 de-
signs for even higher throughput in the future. It borrows
from Bitcoin’s transaction format but is designed to be
validated without looking up data from the UHS, which
we term transaction-local validation.

Our design choices let us exploit payment application
semantics to create a streamlined commit protocol for dis-
tributed transactions. In particular, our transaction format
guarantees that Hamilton knows the read and write sets
for every valid transaction before its execution; similarly,
our cryptographically-generated UHS identifiers (hashes)
are globally unique. These two properties guarantee that
Hamilton does not need any reads or locks before commit
time, and that valid transactions (those that do not try to
spend the same funds twice) will never conflict.

Our evaluation shows that co-design achieves improved
performance over more general, commercial databases.
We measured Hamilton’s throughput at 1.7M txns/sec,
26× that of PostgreSQL on the same workload, though
with higher latency (§6). We also compare against Ro-
lis [64], a replicated in-memory database, and show that
Hamilton achieves close performance, even though it
stores data on disk for whole system crash recovery.

The UHS design, in combination with our transaction
format, also affords us substantial flexibility. We believe
that the abstractions our system provides and the assump-
tions it makes are compatible with most ideas underly-
ing certain types of programmability and cryptographic
privacy-preserving designs [10, 52, 69, 71]. In addition,
we can upgrade the scripting language or add a cryp-
tographic privacy-preserving protocol (even supporting
multiple concurrent designs), as long as they are com-

902    20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



patible with 32-byte hash storage, without needing any
changes to the backing UHS, making it possible to defer
decisions on specific programmability features. However,
our design choices have implications on what data users
or intermediaries need to store in their wallets and what
messages are required to confirm a payment (§3.7).

In summary, the contributions of this paper are the
following:

• Hamilton, a flexible transaction processor design that
supports a range of models for a CBDC and mini-
mizes data storage in the core transaction processor
while supporting self-custody or custody provided
by intermediaries

• A transaction format and implementation for a UHS
which together support modularity and extensibility

• An implementation and evaluation which shows
good performance in comparison to centralized
databases. Hamilton and the benchmarks are avail-
able at https://github.com/mit-dci/opencbdc-tx.

2 System model and security goals
This section describes the actors in Hamilton, their roles,
and the security properties we want Hamilton to satisfy.
In our description, we make the simplifying assumption
that users directly custody their money without help of
an intermediary. Hamilton supports intermediaries, and
adding an intermediary would not change the core security
properties of the transaction processor.

2.1 Actors
We distinguish three types of actors: the transaction pro-
cessor, the issuer, and users. The transaction processor
keeps track of funds which are owned by different users.
Funds are a representation of money and as such refer
to an amount of money (such as dollars) and a condition
that must be satisfied to move this amount (say, to another
user or users). The funds enter and exit the system through
acts of the issuer who can mint and redeem funds to add
and remove them from the transaction processor, respec-
tively. Users can execute transfer operations (transactions
or payments) that atomically change the ownership of
funds, with the requirement that the total amount of funds
stored in the transaction processor has not changed. A user
does so by submitting their transaction to the transaction
processor over the Internet, which the processor then vali-
dates and executes. Figure 2 shows the high-level system
model and potential communication channels between
users and the transaction processor. Users run wallet soft-
ware (e.g. on mobile phones or specialized hardware in
smart cards) to manage cryptographic keys, track funds,
and facilitate transactions. An important piece of future
work is preventing spam and denial of service attacks.

Sender wallet
Alice: $20 Transaction 

processor

Stores all funds and 
executes transfersRecipient wallet

Bob: $0

Transaction 
requests and 
confirmations

Figure 2: Data flows between all participants in a transac-
tion.

2.2 Threat model
Our goal is that each user’s funds and the integrity of
the monetary system are safe from interference of an
external actor. We assume that the transaction processor
is faithfully executing our design, that users’ wallets are
able to maintain secret keys, and that the users are able to
use a secure channel to communicate with the transaction
processor. Our design is a cryptographic system so we
assume the security of standard cryptographic primitives
such as hash functions and digital signatures.

We aim to protect against an adversary who can freely
interact with the system as a regular user, and as such
make no additional assumptions about an adversary’s ca-
pabilities or behavior. For example, the adversary is free
to create arbitrarily many identities and wallets, receive
funds from other users, and engage in elaborate transac-
tion patterns. Our designs are multi-server systems and
the adversary is free to attempt concurrent attacks against
all externally-exposed parts of the system.

2.3 Data representation
The two most common ways to represent funds are the
account balance model and the UTXO model.

Account model. Traditional payment systems and sev-
eral cryptocurrencies, like Ethereum [73] use an account
model where the system stores unspent funds as balances
associated with unique account identifiers. Users make
payments by issuing requests to the transaction processor
to move balance to another identifier (decrementing their
balance and incrementing another identifier’s balance).

UTXO model. Another choice is to track discrete pieces
of outstanding funds without explicitly consolidating
them in a single balance. For example, Bitcoin maintains
an append-only ledger of accounting entries (sometimes
called “coins”) each of which records a value and condi-
tions to spend the funds. Furthermore, each entry is either
marked as “spent” or “unspent”. Users make payments
by issuing transactions that mark some entries (inputs)
as spent, and appends new unspent entries (outputs) to
the ledger. In Bitcoin these are called UTXOs or Unspent
Transaction Outputs. Importantly, UTXOs are never mod-
ified and must be spent in their entirety. Therefore, Alice
wishing to use a $10.00 UTXO to send $4.99 to Bob
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will create a transaction with two outputs: a $4.99 out-
put meant for Bob and a $5.01 change output meant for
herself.

We derive Hamilton’s data model from the UTXO
model for two reasons: First, because it offers greater
transaction execution parallelism; inputs can only be spent
once, and so in the common case there should never be
conflicting transactions, unlike concurrent transactions
against a popular account. We leverage this in our data
storage design (§3.4). Second, UTXOs are the leading
choice for privacy designs [10, 16, 26, 45, 48, 69, 71]
(including for those deployed on top of account-based cur-
rencies [61, 72]). UTXOs can be less intuitive to the user,
but note that the transaction processor’s internal data rep-
resentation is distinct from the user interface; wallets can
still present a user account balance on top of the UTXO
data representation.

2.4 System operations
Logically, Hamilton maintains a record of all unspent
funds in existence and in order to spend funds, they must
be present in the set of unspent funds. Our system supports
three kinds of operations: Mint, Redeem, and Transfer,
all of which are atomic and serialized.
Minting and redeeming. The Mint operation creates
new unspent funds and adds these to the set of unspent
funds, whereas the Redeem operation removes unspent
funds from the system, making them unspendable. These
operations also have semantics outside Hamilton: minting
would normally correspond to funds in other forms of
central bank money being set aside for use in Hamilton,
whereas redeeming would make them available again.
Value transfers. The Transfer operation both consumes
unspent funds and creates new unspent funds. This trans-
action is specified by a list of funds to be spent (inputs),
a list of new funds to be created (outputs), and a list of
witnesses (i.e., digital signatures) authorizing spends of
each input. A successful Transfer completely consumes
its inputs; these are removed from the system and cannot
be used again, whereas the new outputs are available to
be used as inputs to other Transfer or Redeem operations.
No editing of unspent funds. The set of unspent funds
can only be modified via the above three operations, and
funds tracked in the system cannot be modified to change
their ownership or value.
Payment discovery. In public blockchains users can
search the publicly available history of transactions to
see if they have received payment. Transaction history in
Hamilton is not public, and the sender must give the recip-
ient the information about newly created unspent funds so
that the recipient can further spend them. To ensure users
know a Transfer is complete and has been applied, the
transaction processor is also responsible for responding
to user queries about the existence of unspent funds.

2.5 Security properties
In brief, the system must faithfully execute transactions,
ensuring that each was authorized by the owner of the
input funds, and safeguard that transactions do not disturb
the overall balance of funds (outside of minting and re-
demption). Hamilton’s transaction processor ensures this
by satisfying the following four security properties.

Authorization. Hamilton only accepts and executes Mint
and Redeem operations authorized by the issuer, i.e., only
the issuer can mint and redeem funds. We use digital
signature authorization for these. Similarly, we require
that each Transfer transaction is signed by owners of all
inputs the transaction attempts to spend.

Authenticity. The set of unspent funds tracked in Hamil-
ton only contains authentic funds, as we now define. De-
fine unspent funds created by authorized Mint operations
to be authentic. Moreover, define unspent funds created
by Transfer operations to also be authentic if and only if
all inputs consumed by the transaction were authentic and
the transaction preserves balance. Note that the recursive
authenticity property depends on both the contents of the
transaction itself, as well as the set of unspent funds when
Transfer is applied.

Durability. Mint, Redeem, and Transfer are the only op-
erations in Hamilton that change the set of unspent funds.

As a consequence of the three integrity properties de-
fined above the set of unspent funds always remains au-
thentic and transactions in Hamilton cannot be reverted.
We further require that the transaction processor makes
the following availability guarantee and always makes
progress:

Availability. The transaction processor will always accept
an authorized transaction spending authentic funds.

3 Transaction design and processing
This section first reviews Bitcoin’s UTXO model in more
detail and explains the challenges associated with using
this data model in our setting. It then describes the UTXO
hash set (UHS), a different idea that we choose as a ba-
sis for Hamilton’s data model and the motivation behind
our choice. Finally, it introduces Hamilton’s transaction
format, describes how to securely create and process trans-
actions in this model, and discusses implications on future
functionality.

3.1 Bitcoin’s UTXO model
Bitcoin uses the UTXO model, where each output utxo
has a value and an encumbrance: The value v is an integer
multiple of the smallest subdivision of Bitcoin and an en-
cumbrance is a script, an executable program which eval-
uates the conditions for a valid spend. An encumbrance
expresses a predicate P taking two arguments: a transac-
tion tx seeking to spend this utxo, and a witness wit. A
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transaction is a list of references to input UTXOs to be
consumed together with a list of corresponding witnesses,
and lists of values and encumbrances for new UTXOs to
be created. Each encumbrance predicate returns true if
and only if its corresponding witness signifies that this
spending transaction should be authorized.

A common encumbrance is that of digital signature
authorization, known as pay-to-pubkey (P2PK). Here the
predicate P hard-codes a public key pk and P(tx,wit)
checks that wit consists of a valid signature under the pub-
lic key pk where the message is the serialized spending
transaction tx. To spend such a utxo, the user creates a
transaction tx having the utxo as an input and signs tx
with the corresponding secret key sk.

3.2 UTXO model challenges
Adopting Bitcoin’s design in our setting comes with a
number of challenges. First, Bitcoin’s UTXO model re-
quires maintaining a copy of the entire UTXO set in
full detail. This has unwanted implications for privacy
as Bitcoin node operators are both privy to values and
encumbrances (i.e., users’ public keys), as well as for data
storage, especially when using complex or post-quantum
secure encumbrances, which might be large. Second, in
Bitcoin, transactions only refer to their inputs by speci-
fying a hash txid of a prior transaction together with a
particular output index idx of that transaction. Thus, to
validate a transaction a node has to look up the input en-
cumbrances and values in its local UTXO set, and only
trivial validation checks can be done statelessly. This is
reasonable when the UTXO set is small and nodes store
it locally, but becomes more challenging when it must
be partitioned across many machines to achieve higher
performance, while still being accessed consistently.

3.3 UTXO hash set
A key observation in the design of Hamilton is that we
can divide transaction validation checks into two parts –
transaction-local validation, which does not require ac-
cess to shared state, and existence validation, which does.
We can then scale these two tasks independently. This
is useful because they have different scalability profiles,
with transaction-local validation requiring mostly com-
pute resources (i.e., verifying digital signatures used in
spend authorization) and existence validation requiring
mostly persistent storage I/O.

By doing this, we can go even further and observe that
after transaction-local validation, instead of processing
and storing the entire UTXO, we can operate on cryp-
tographic commitments to the UTXOs. In Hamilton we
replace the UTXO set with a UTXO hash set (UHS), ex-
tending an idea first proposed as a Bitcoin storage and
scalability improvement [41]. That is, our transaction pro-
cessor stores unspent funds as a set of opaque 32-byte
cryptographic hashes of UTXOs, not UTXOs themselves.

We refer to hashes of UTXOs as UHS IDs or simply
hashes. Instead of looking up the transaction input data
(which we do not have), we ask the (untrusted) user to
provide full input UTXOs in a transaction. However, a
malicious user might lie and claim to have more funds to
spend than they actually do. To catch this, we reduce the
problem of checking UTXO correctness to UHS commit-
ment existence—Do the funds the user is claiming they
can spend actually exist? As we’ll see in §4, this affords
us the opportunity to piggyback existence validation with
actual execution inside the distributed transaction commit
protocol.

UTXOs must be stored in the user wallets and are sup-
plied as part of transactions. We also note that while in
Bitcoin the UTXO set is derived by processing the Bitcoin
blockchain and keeping the set of unspent UTXOs, Hamil-
ton’s backend is a transactional database that maintains
the UHS without operating a ledger.

Using a UHS has a number of benefits. First, as de-
scribed above, a UHS-based transaction format lets us de-
couple transaction validation from funds existence checks
and affords us opportunities for performance improve-
ment in the backend. Second, it lowers storage require-
ments, as the transaction processor only stores a 32-byte
hash per UTXO, independent of a UTXO’s size. Third,
it increases flexibility, as the UHS abstraction makes no
assumptions about what hashes represent: it is easy to
adapt a high-performance system maintaining a UHS, like
Hamilton, to a different transaction formats or scripting
languages without needing to change the core execution
engine. Fourth, it improves privacy as the transaction pro-
cessor does not store balances or account information.

However, a UHS design also presents some challenges,
stemming from its data minimization. The UHS, as de-
scribed above, does not contain enough information to
audit the total amount of unspent funds (the “full” UTXOs
only reside in user wallets). However, UHS hashes could
be augmented to store a value alongside hashes (mak-
ing supply auditing trivial, at some privacy cost), or by
converting UHS IDs to homomorphic commitments that
can be maintained and tallied using additional crypto-
graphic techniques [54, 60]. The sender also has to pro-
vide the recipient with the UHS ID preimage to further
spend their funds, as described in §3.7. Finally, decou-
pling transaction-local validation and access to shared
state means that future transaction programmability is
restricted to only referencing transaction-local data.

3.4 Transaction format
To build Hamilton we designed a new, extensible trans-
action format in the UHS model. As we will see later,
Hamilton’s transactions can be split into transaction-local
validation and existence checks.

Unspent funds. We represent unspent funds as triples
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utxo := (v,P,sn). Here v and P are value and encum-
brance. Currently we only support encumbrances of pub-
lic keys, and thus represent predicate P by the 32-byte
public key pk itself. Our model supports future encum-
brances, such as requiring a subset of signatures from
multiple public keys.

The third component, sn is a globally unique serial
number. The serial number, enables us to reference and
distinguish funds that share the same encumbrance and
value (e.g., Alice having received same $5.00 value in two
different transactions encumbered with the same public
key pkAlice); it also implies that UHS is a set, not a multi-
set. Our transaction format will ensure that serial numbers
do not repeat across time: a serial number associated with
a spent UTXO cannot “reappear” as a serial number for a
new unspent UTXO. Global uniqueness of serial numbers
is not a mere technicality: they express the intent of sin-
gling out a particular UTXO and prevent replay attacks
(see §3.6 for discussion).

UTXO hash set. Instead of storing a set of entire UTXOs
utxo = (v,P,sn), we store cryptographic commitments
h := H (v,P,sn) to UTXOs. In Hamilton we set H to be
SHA-256 to derive these hash commitments.

Mint transactions. New funds enter the system by sys-
tem operator creating new utxo’s and adding their hashes
to the UHS. The issuer must choose unique serial num-
bers for newly minted UTXOs. It suffices to set these as
uniformly random nonces.

Transfer transactions. A k-input, l-output Transfer trans-
action seeks to fully consume k UTXOs currently present
in the system, and create l new UTXOs specified by en-
cumbrances and values. Such a transaction txTransfer =
( ⃗utxoinp, v⃗out, P⃗out; w⃗it) is comprised of (a) a size-k list
⃗utxoinp of input UTXOs to be spent; (b) two size-l lists

v⃗out and P⃗out of output values and encumbrances specify-
ing output UTXOs to be created; and (c) a size-k list of
witnesses w⃗it, one for each input.

Such txTransfer creates l UTXOs with
value/encumbrance pairs (vout,i,Pout,i). We make
UTXOs unique by deriving the serial numbers sn as pairs
sn := (txid, idx) as follows. The first component, txid
is the unique transaction identifier, the cryptographic
hash of the transaction that created this UTXO. This
hash covers all input UTXOs, output encumbrances and
values: txid(txTransfer) := H (( ⃗utxoinp, v⃗out, P⃗out)). The
second component, idx, is the particular output index, i.e.,
first, second, etc, output of the transaction.

Note that our transaction format includes input UTXOs
in the Transfer itself. In contrast, a Bitcoin transaction
does not: it references UTXOs via txid and idx instead,
and requires UTXO look-ups in transaction processing.

Transaction creation. To create a Transfer transaction,
users digitally sign txid with private keys corresponding to

inputs they are spending. Each of these signatures serves
as the witness authorizing the transaction to spend the
given input. Witnesses are not included in the transaction
identifier so signing can be deferred by the sender to after
the transaction has been shared with the recipient. This
is useful to support future smart contract functionality
where unsigned transactions could be shared between par-
ties to be signed and broadcast later under certain condi-
tions. Recall that encumbrances are applied to individual
outputs rather than whole transactions, and transactions
can have multiple inputs, which means that funds can be
spent atomically from multiple public keys in a single
transaction. Once a transaction is finalized, the users will
deterministically derive serial numbers of each of the out-
put UTXOs from the transaction contents. Users store this
outpoint information in their wallets.

3.5 Transaction execution
Processing a Transfer transaction involves confirming
that it is valid and then applying it to the state. Validation
involves checking the following:

1. Syntactical correctness. Check that the transaction
has at least one input and output, and that the trans-
action supplies exactly one witness per input.

2. Balance. Check that transaction’s input values tally
up to exactly the same value as outputs to be created.

3. Authorization. Check that each input UTXO is ac-
companied by a valid signature, relative to the input’s
public key, on a message comprised of the transac-
tion’s identifier txid.

4. Authenticity. Check that transaction’s input hashes
exist in the UHS.

To apply a valid transaction to the UHS we atomically
remove the spent input hashes and create the new out-
put hashes under the control of the recipient(s); this in
combination with the other checks provides durability.

Performing local-validation. Hamilton has dedicated
components, which we call sentinels, that receive transac-
tions from users and perform transaction-local validation.
This local validation performs the above syntactical cor-
rectness, balance, and authorization checks.

Compaction. We further observe that while the
transaction-local validation does not reference any data
from the state and only uses transaction-local data, the
UHS, in turn, does not reference a transaction’s contents
and only operates on the hash values. Thus, once locally
validated, a transaction is compacted. First, the sentinel
derives the output UTXO serial numbers; together with
output encumbrances and values they fully specify output
UTXOs to be created. Next, the sentinel hashes the input
and output UTXOs and obtains two lists of hashes which
we call a compact transaction. Finally, sentinels forward

906    20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



compact transactions to the execution engine, which main-
tains the UHS, for existence checks and to update the UHS
state.
Checking existence, execution and the swap abstrac-
tion. Now, given a compact transaction, our system does
the following: First, check if all input hashes exist in the
UHS; if so (a) remove the input hashes from the UHS
and (b) add the output hashes of newly created UTXOs to
the UHS. We call this UHS primitive swap. Processing
Hamilton transactions at scale reduces to the challenge
of implementing a fast, scalable, and durable backend for
executing swap, which we describe in §4. Such a backend
abstraction maintains a set of hashes, and exposes swap
as the only operation. The inputs to swap are two lists
of hashes: one for existence checks and removal (called
input hashes), and one for insertion (called output hashes).
To execute a swap, the system atomically checks that all
input hashes are present. If an input hash is missing, swap
aborts. Otherwise, it obtains an updated set of hashes by
erasing all input hashes and inserting all output hashes.
All other hashes in the set remain unchanged.

We note that separating transaction-local validation and
execution means that swap supports multiple transaction
formats concurrently without affecting UHS performance.

3.6 Transaction format security
Using our transaction format Hamilton maintains an au-
thentic, authorized and durable set of unspent funds (§2.5),
eliminates the possibility of double spends, and also
achieves additional security goals related to its use. In
particular, transactions in Hamilton are not replayable
and digital signature authorizations are not reusable.

These properties are a consequence of the fact that
each UTXO created by a Mint or Transfer transaction is
unique and guaranteed to not equal any other UTXO in
the past or in the future, as we now explain. In Hamilton,
each Transfer’s UHS IDs are derived by hashing all the
corresponding transaction’s inputs, as well as details perti-
nent to the particular output itself (see §3.4). In particular,
sn references previous unique serial numbers and recur-
sively incorporates the entire transaction history up to
distinct (due to presence of the uniformly random nonce)
Mint’s. Collision resistance of H guarantees that these
serial numbers are unique. Because UHS hashes com-
mit to the same UTXO data which must be provided in
the transaction, an attacker can not fit a different UTXO
preimage into the same UHS hash without violating the
collision-resistance of H .
No double-spends. Transfer operations permanently
delete input hashes from the UHS. Therefore, as serial
numbers are unique, no UHS ID can be spent more than
once or recreated after having been spent.
No replay attacks. In a basic replay attack the victim
has signed a single transaction to authorize a single value

transfer. The attacker, however, submits this transaction
twice in the hope of effectuating two value transfers. For
example, Alice, who has two unspent $5.00 “bills”, might
give Bob a transaction that spends one of her $5.00 bills
to pay for ice cream, which Bob then submits twice to
take possession of both.

Hamilton’s transaction format prevents replay attacks
as each transaction references globally unique input
hashes, and each signature covers the entire transaction, in-
cluding all its inputs and outputs. Thus, signatures are not
valid for spending any other UHS ID, including those cre-
ated in the future, and it is not possible to copy a Hamilton
transaction and apply it multiple times to spend additional
funds.

Transactions are non-malleable. In a system with mal-
leable transactions, an attacker can change some details
about the transaction (e.g., the witnesses used to satisfy in-
put encumbrances or output UTXO serial numbers) with-
out otherwise changing the input UTXOs or modifying
output UTXO values or encumbrances. For example, if the
transaction format included an auxiliary field not covered
by the signatures but used in serial number computation,
an attacker could change this field. This would change
output UTXO serial numbers and make it unsafe to accept
a chain of unconfirmed transactions, thus preventing cer-
tain higher level protocols like the Lightning Network. In
2014, the largest Bitcoin exchange Mt. Gox closed after
claiming to be a victim of malleability attacks [32]. In our
implementation, we require signatures to cover all fields
of uniquely-encoded transaction and derive UTXO serial
numbers from the same fields (plus, output indexes).

3.7 Transaction protocol
Our choice of transaction data model and format directly
impacts potential transaction protocols. For example,
transaction compaction for the UHS adds a new communi-
cation step requirement between sender and recipient. The
recipient should not consider a payment “complete” until
they have received both a confirmation from the transac-
tion processor and the full preimage data for their new
outputs. If the recipient does not receive these, the sender
has essentially destroyed the funds.

In theory, cryptocurrencies in which the recipient’s ad-
dress is obfuscated also have this problem. In practice, be-
cause the entire blockchain is public and standard address
formats are used, recipients can scan every transaction
to detect if they have been paid and, if so, construct new
transactions to spend those funds. Even if the UHS were
public, recipients would still not be able to unilaterally
detect payments. The hash preimage for a UHS ID de-
pends on data from the transaction that creates the UTXO
which is unavailable to the recipient. As there is no public
ledger, recipients must rely on the transaction processor
to learn about the status of outstanding transactions.
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Figure 3: System diagram for the 2PC architecture and
inter-component data flow

4 Processing transactions at scale
As described in §3, transaction processing can be split
into transaction-local validation, existence validation, and
execution, which creates opportunities for improving per-
formance. To process more transactions, we partition the
set of unspent funds across multiple computers. Transac-
tions might reference unspent funds stored on different
machines, requiring a coordination protocol to check ex-
istence of inputs and execute transactions atomically.

One way to achieve this is to first explicitly order all
valid transactions and subsequently apply them to the par-
titioned state in the same order, if the inputs exist and have
not already been spent. We investigated this architecture
and found performance was limited by the ordering server
(§4.3). However, we note that payment semantics do not
require materializing a linear transaction history. Thus,
we also built an architecture which executes transactions
in parallel to achieve high performance, described next.

4.1 Applying transactions to the UHS
We use variants of two-phase commit and conservative
two-phase locking[36, 44] to atomically apply transac-
tions to the UHS, partitioned across shards which are
each responsible for a subset of the UHS IDs which are
unspent within the system.

Figure 3 shows a diagram of the components in the 2PC
architecture and the data flow between components. As
described in §3.5, a wallet submits a transaction to a sen-
tinel (1), which validates everything except the existence
of inputs. Upon success, sentinels convert transactions to
compact transactions and send compact transactions to a
transaction coordinator (2).

Each coordinator has a thread pool to execute transac-
tions in parallel, and adds incoming compact transactions
from sentinels to a queue. Once a thread from the pool
becomes available, it drains the queue and creates a new

distributed transaction (dtxn) containing the pending com-
pact transactions (up to a maximum size). The thread then
performs the 2PC protocol to commit the dtxn. If a thread
is available, it will begin a new dtxn even if there is only
one compact transaction waiting in the queue, it will not
wait for the queue to grow. Due to application choices
described in §3, we know the read/write sets ahead of time
and can execute the dtxn entirely inside the 2PC protocol,
without any extra roundtrips. This is the same technique
introduced in Sinfonia [1].

There are three steps to commit a dtxn:

1. Prepare (3). The coordinator contacts each shard
responsible for a UHS ID included in the dtxn and
requests that it durably lock the input UHS IDs (a pre-
pare request). (Note that by design of our transaction
format (see §3.4), valid output UHS IDs are guaran-
teed to be unique across transactions, so reserving
outputs is not necessary.) Each shard responds to the
prepare request indicating which compact transac-
tions in the dtxn had their IDs successfully locked,
and which no longer exist, or were already locked by
a different dtxn (4).

2. Commit (5). The coordinator uses the shards’ re-
sponses to determine which compact transactions in
the dtxn can be completed, and which cannot com-
plete because some of the inputs are unavailable
or already locked. The coordinator makes this deci-
sion durable and then contacts each shard again to
indicate which compact transactions in the dtxn to
complete and which to cancel (a commit request).
Each shard then atomically unlocks the input UHS
IDs belonging to a canceled transaction, deletes in-
put UHS IDs and creates the output UHS IDs for
successful transactions, and updates local dtxn state
about the status of the dtxn. The shard then responds
to the coordinator to indicate that the commit was
successful (6).

3. Discard (7). The coordinator issues a discard to each
shard informing them that the dtxn is now complete
and it can forget the relevant dtxn state.

Once every shard participating in the dtxn has com-
pleted the commit, the coordinator informs each sentinel
whether its transactions were successfully executed or
rejected by the shards (8). The sentinels in turn forward
these responses to the users who submitted the transac-
tions (9).

It is possible that if two concurrent transactions by
different transaction coordinators spend the same inputs,
neither will succeed, because both will be canceled due
to observing the other’s lock conflicts. This means that at
least one will need to be retried, which is left to the user’s
wallet. An adversary could try to continually conflict a
user’s transaction by spending the same input. However,
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this requires the adversary to have the authorization to
spend the input in order to pass sentinel validation. Inves-
tigating methods to fairly resolve concurrency conflicts is
left to future work.

Combining many compact transactions into a larger dis-
tributed transaction amortizes the costs of messaging and
making the result of each phase of the protocol durable
on each shard, whether by flushing to persistent storage
or replicating as part of a distributed state machine. Be-
cause our application semantics are constrained, this is
slightly different from traditional two-phase commit in
that dtxns always complete successfully, and individual
compact transactions are executed (or not) deterministi-
cally: if all of a compact transaction’s input UHS IDs are
locked and output UHS IDs are reserved, the compact
transaction will succeed. The transaction coordinator al-
ways completes both phases of dtxns, even if some of
the compact transactions within do not succeed. General
2PC designs need to support transaction coordinators that
might make arbitrary decisions about whether to commit
or abort transactions.

4.2 Fault Tolerance
Each transaction coordinator and shard is made fault tol-
erant using Raft [58], a distributed consensus algorithm.
Sentinels only maintain state during the duration of the
user wallet request to return transaction status to the user;
if one fails, the user’s wallet will need to retry its transac-
tion or ask about its status with another sentinel.

Only the leader node in the transaction coordinator
Raft cluster actively processes dtxns; followers simply
replicate the inputs to each phase of the dtxn. This is
a technique used in deterministic scalable database sys-
tems [68]. Before initiating each phase of the distributed
transaction, the coordinator replicates the inputs to both
the prepare and commit requests to each shard. Shards
remember which phase each dtxn has last executed and
the response to the coordinator. If the coordinator leader
changes mid-dtxn, the new leader reads the list of active
dtxns from the coordinator state machine and continues
each dtxn from the start of its most recent phase. Shards
that have already completed the requests will return the
stored response to the new coordinator leader. To ensure
proper completion of the commit across all shards, shards
will remember the response for the commit until the coor-
dinator has received responses from all shards in the dtxn
and issued a discard to inform shards the dtxn is complete
and can be forgotten. Note that these can be applied lazily
and the transaction coordinators can inform the sentinels
the transactions were successful before issuing discard.

Similar to coordinators, in each shard cluster only the
leader processes dtxns and responds to sentinels. Al-
though followers do not handle RPCs, they maintain the
same UHS as the shard leader, so they are prepared to

take over processing RPCs if the leader fails without a
specific recovery procedure beyond that provided by Raft.
Once a dtxn has entered the prepare phase and has been
replicated by the coordinator cluster, the dtxn will always
run to completion. If a shard leader fails mid-transaction,
the coordinator leader will retry requests until a new shard
leader processes and responds to the request.

4.3 Comparison to blockchain architectures
Many have suggested using blockchain technology to
design a central bank digital currency. We found that us-
ing a blockchain-based system in its entirety was not
a good match for our requirements. First, there was no
requirement to distribute governance amongst a set of
distrusting participants. The transaction processing plat-
form is controlled and governed by a central administrator.
Blockchains use relatively new distributed consensus pro-
tocols which are designed to operate in a permissionless,
adversarial environment. This introduces software and
operational complexity as well as new cryptographic as-
sumptions. A CBDC should rely on the simplest, most
well-understood, well-tested protocols to achieve its goals.

Second, we anticipated the complexity of a blockchain
architecture would limit performance. To evaluate this
we implemented a streamlined permissioned-blockchain-
inspired design, the atomizer. Instead of using transac-
tion coordinators and two-phase commit, the atomizer or-
ders compact transactions into blocks through a replicated
state machine. To reduce load on this ordering server, the
design outsources storage of the UHS to shards, which
hold the partitioned UHS ID state as in the 2PC design.
However, a shard’s UHS ID state is only correct up to
a specific block height. Sentinels send compact transac-
tions to shards, and shards then pass attestations for input
IDs that exist to the atomizer, which collects complete
compact transactions into blocks. The atomizer broad-
casts confirmed blocks so shards can update their state,
deleting spent UHS IDs and creating new ones. Shards
do not require consensus or even primary/backup for cor-
rectness, they are merely replicated. For the specifics of
the atomizer design see a related technical report [51].
As might be anticipated, we found the atomizer architec-
ture’s throughput is limited by the resource constraints
(network bandwidth and CPU) of a single server, the at-
omizer leader, and cannot benefit beyond a limited point
from additional shard resources (§6).

OmniLedger [49] is a sharded blockchain design which,
like Hamilton, operates in the UTXO model, but uses
a client-driven commit protocol to commit cross-shard
transactions without going through a single server. Based
on reported results, OmniLedger can achieve much higher
performance than our atomizer prototype (with a replica-
tion factor of four per shard and 1% adversarial power,
approximately 400K txns/sec). However, in Hamilton we
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did not want to rely on clients, which might fail or dis-
appear, to complete transactions. Hamilton instead uses
replicated transaction coordinators, so incomplete trans-
actions will never result in stuck or frozen funds.

5 Implementation
We implemented Hamilton in C++17, released at [https:
//github.com/mit-dci/opencbdc-tx], and tested on Linux
and macOS, though it should be portable to any UNIX-
like system. The primary dependence on a UNIX-
compatible API is our use of UNIX sockets for network
communication. Clients communicate via a custom serial-
ization protocol, via single, short-lived TCP connections.

We use LevelDB [43], NuRaft [35], libsecp256k1 [13]
and vendored components from Bitcoin Core [12]. We
use BIP-340 compatible Schnorr signatures [76] as our
digital signature scheme. We also use the cryptography
components of Bitcoin Core to provide optimized imple-
mentations of SHA256 [56], used as our cryptographic
hash function, SipHash [4] used for hashmaps and bech32
[74, 75] used for error-correcting public key encoding.

6 Evaluation
Our evaluation answers the following questions:

• How does Hamilton’s performance compare to other
database and blockchain-based designs?

• How does Hamilton perform with multiple regional
failures?

• How well does Hamilton tolerate different transac-
tional workloads, whether with larger transactions or
double spends?

Setup. Unless otherwise specified, for benchmarking we
deployed on Amazon Web Services (AWS) using EC2 vir-
tual servers running Ubuntu 20.04 (c5n.2xlarge instances
with 8 vCPUs and 21GB RAM). We ran the system com-
ponents across three regions within the United States:
Virginia, Ohio and Oregon. Round-trip time between Vir-
ginia and Ohio was ≈ 12ms, Virginia to Oregon ≈ 62ms
and Ohio to Oregon ≈ 51ms. Unless otherwise stated,
there were 1B outputs, 8 logical shards, and shard and
coordinator clusters were replicated by a factor of three.
In particular, each shard and each coordinator has a Raft
node in each of these three regions. Non-replicated com-
ponents such as sentinels and load generators were dis-
tributed between regions to simulate load from across the
United States. Load generators (c5n.large instances with
2 vCPUs and 5.25GB RAM) were simulated wallets that
produced valid, signed transactions with two inputs and
two outputs unless otherwise stated. We limited dtxns to
a maximum size of 2000 compact transactions, and each
coordinator had a thread pool containing 75 threads.

We do not consider data from a benchmark for a config-
uration if any Raft cluster was unable to reliably replicate
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Figure 4: Compares the peak throughput of 2PC, the at-
omizer, and Rolis, when varying logical shard count (2PC
and atomizer) or the number of threads (Rolis).

data between all regions during the experiment. Take,
for example, a three node cluster: if one follower is reli-
ably lagging behind due to data replication issues, though
the leader and other follower still form a quorum, this
configuration can’t tolerate an additional failure of either
node without potentially suffering a delay and throughput
reduction. We took this to imply the system was oversatu-
rated.

6.1 Comparison
Figure 4 shows the peak throughput for Hamilton and
the atomizer when varying the number of load generators
for different shard counts. Our 2PC architecture scales
linearly as the number of logical shards increases, up to
1.7M txns/sec with less than one second 99% tail latency
and under 500ms 50% latency, though we expect peak
throughput would continue to increase with more shards
and this would not negatively affect latency. Additionally,
if a lower tail latency is desired for a particular transaction
throughput, increasing the number of shards can decrease
tail latency for the same offered load. This makes sense
because, in the worst case, each transaction requires the
participation of a subset of shards equal to the number of
inputs and outputs in the transaction. Since transactions
in the test load have an upper bounded number of inputs
and outputs, increasing the number of shards results in
each transaction requiring the participation of a smaller
proportion of the total shards in the system.

The atomizer achieves 170K txns/sec with under two
seconds 99% tail latency and 700ms 50% latency, the
bottleneck being network bandwidth limitations between
the replicas in different regions. In other experiments we
found if bandwidth constraints are relaxed, computation
in the lead atomizer replica to manage Raft replication
and execute the state machine becomes the bottleneck.

We compare Hamilton’s performance to three cen-
tralized databases: PostgreSQL, Rolis [64], and Cock-
roachDB. In all cases the workload was the swap func-
tion with 2-in/2-out compact transactions; we did not run
sentinels or do signature checking, which improved la-
tency for these measurements.

PostgreSQL. We chose to compare against PostgreSQL
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since it is a widely used, fully-featured commercial
database. We ran PostgreSQL on c5a.8xlarge EC2 in-
stances, using benchmarking recommendations [50] and
implementing swap as a stored function. We were able to
obtain a max throughput on PostgreSQL v13.8 of 63.4K
txns/sec and an average throughput over a 45 second
run of 61K txns/sec, with average and 99% latency (as
measured on the client) of 10ms, using hundreds of load
generating clients. The database had 38.4M UHS IDs.
Our experiments indicated that PostgreSQL is limited by
throughput to the write-ahead log. Note that this was a
single-machine benchmark with no replication.

Rolis. Rolis is a very high-performance in-memory
research database. To evaluate Rolis we implemented
the swap function in the benchmarking experiment soft-
ware that accompanies Rolis. We used three replicas in
the regions specified above and, as Rolis uses significant
amount of RAM, used c5n.18xlarge instances (72 vCPUs,
192 GB RAM), largest among the c5n family of instances
that we used to evaluate Hamilton. We did our experi-
ments using Ubuntu 18.04.

We used a database containing 200M UHS IDs, unlike
the 1B used for benchmarking Hamilton as 250M and
larger data base sizes reliably ran out of memory. Figure
4 shows the performance as we increase the number of
threads; the thread count there includes the additional
thread [64, §6.1] that Rolis uses to advance the watermark
and perform leader election tasks. To maximize Rolis’s
performance, we (a) implemented load generators inside
each Rolis thread (so unlike when evaluating Hamilton,
PostgreSQL, or CockroachDB, the load generators were
not networked) and (b) used sequential UHS IDs. The
latter avoids calling a hash function to generate UHS IDs
in the critical path of the load generator, which halved the
throughput when we tried it, but would be parallelizable
in a different load generator implementation.

Rolis achieves a max throughput of 1.91M txns/sec on
our workload. When replicating the YCSB++ benchmark
on the same EC2 instances, the max throughput using
32 threads was 10.2M txns/sec, comparable to 10.3M re-
ported in the Rolis paper. Our keys are 32 bytes instead of
8 bytes, and unlike YCSB++, which is 50% read-only, our
workload is 100% read/modify/write, thus it requires more
logic per transaction and more bandwidth for replication.

The almost-linear scalability when using 1, 2, 4, 8, and
16 threads did not continue when thread count increased
from 16 to 31. We attribute this to hyper-threading: Ro-
lis’s implementation only supports a single socket (as it
uses rdtscp counters for time-stamping), whereas our
72 vCPU instance had 16 cores (32 hyper-threads) per
socket. This made our 31 thread benchmarks use hyper-
threading and we would expect Rolis to perform better
with an increased number of dedicated cores.

When comparing performance, it is important to note

00:00 01:00 02:00 03:00 04:00 05:00

Time (mm:ss)

0

2

4

6

T
h
ro

u
gh

p
u
t 

(T
X

/s
) 

×1
0

5 Throughput during two datacenter failures

2PC

Atomizer

Figure 5: Throughput over time where the number of sup-
ported failures for both architectures was 2 and 2 whole
data center failures were triggered at 120s and 180s. 5
sample moving average.

that Hamilton durably commits every transaction to disk,
whereas Rolis runs wholly in-memory persisting nothing
to disk. As our setting calls for ability to cold-start a
system after potentially correlated failures, we see the
excellent Rolis in-memory performance as establishing
an upper, rather than a lower, bound for a backend.

CockroachDB. We ran limited experiments against
CockroachDB v22.1.9, a feature-complete scalable dis-
tributed database. CockroachDB automatically manages
data partition assignments. We ran with a replication
factor of three in the regions specified above, using
c5d.4xlarge instances. We had to implement the swap
function through client queries, requiring two roundtrips
to commit a transaction, as CockroachDB does not yet sup-
port stored procedures or functions. It achieved through-
put of 3.4K, 5.7K, and 11K txns/sec partitioning data
across 1, 2, and 4 logical shards, respectively. Cock-
roachDB is slower because it implements many more
features than Hamilton, whereas implementing swap as
a primitive in our distributed backend reduces the number
of roundtrips and transferred data required to commit.

In summary, Hamilton achieves higher throughput than
PostgreSQL and CockroachDB by co-designing the appli-
cation with the data model, and pushing the swap prim-
itive into the commit protocol. It approaches the perfor-
mance of Rolis, a very fast in-memory replicated database.
Rolis might be a better choice for a backend if in-memory
replication is sufficient for durability; in our application
it was important to have data on disk to have a path to
recovery from simultaneous crashes. Another reasonable
choice is to use an existing commercial database if perfor-
mance is not as much of a concern.

6.2 Fault Tolerance
We evaluate how our system handles up to two regional
data center failures, and its scalability as the number of
supported faults increases.

Figure 5 shows the overall system throughput over time
when shards and coordinators have a replication factor of
five (supporting up to two failures per cluster). To test con-
tinued system availability when up to two data centers fail
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Figure 6: Peak throughput versus the number of tolerated
failures per replicated service. Atomizer used 100M UHS
IDs, 2PC used 1B.

completely, the Raft leaders for coordinators and shards
were killed at 120 seconds into the test, and a subsequent
set of nodes for each cluster were killed at 180 seconds
into the test. The second group of nodes contained a mix-
ture of leaders and followers depending on the result of
the leader election from the previous failure. The plot
shows that our system is successfully able to recover from
the failure of two entire data centers with minimal down-
time and no loss of system performance. For each failure,
throughput was temporarily reduced for less than fifteen
seconds, before automatically recovering to the baseline.
There is no data loss and the system is not left in an in-
consistent state as the replacement coordinators complete
any distributed transactions that were in progress at the
time of each failure.

Figure 6 compares how peak throughput is affected by
the number of supported system failures between architec-
tures by increasing the number of tolerated failures from
0 through 4. The plot shows that as replication factor in-
creases, peak throughput for a given system configuration
decreases. Since the performance of our Raft replicated
services is limited by bandwidth constraints between the
leader and follower nodes, more replicas require more
leader bandwidth to provide the same throughput. In 2PC,
we believe a higher replication factor can be supported
without a loss in performance by increasing the number of
shard and coordinator clusters. The atomizer architecture
could not scale in this way, as the system throughput is
limited by a single Raft service which provides the global
order of transactions.

6.3 Workload Variability
We varied the proportion of transactions with a high num-
ber of inputs and outputs, and the proportion of double-
spending transactions to see how Hamilton performs un-
der different workloads from users.

Figure 7 shows how the proportion of double-spending
transactions, or those with a large number of inputs and
outputs affects peak throughput. In this test, the proportion
of invalid or non-2-in-2-out transactions in the workload
was varied from 0% through 30%. The load generators
sent double-spending transactions by storing previously
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Figure 7: Peak throughput varying the proportion of valid,
2-in-2-out transactions.

confirmed transactions and re-issuing them at a later time.
We only plot the throughput of valid transactions because
double-spending transactions never complete.

As the proportion of large or double-spending trans-
actions increases, the peak throughput decreases. This
behavior is similar to increasing the overall number of 2-
in-2-out transactions. The system is limited by the overall
number of UHS IDs being processed, regardless of how
they are grouped into transactions. Shards and coordina-
tors replicate all transactions, so double-spends exert the
same load as valid transactions. Thus, increasing the num-
ber of shards and coordinators could absorb an increased
proportion of large or double-spending transactions while
executing the same number of valid transactions. Transac-
tions with a large number of inputs most negatively affect
peak throughput because the sentinels have to validate
more signatures per transaction. This could be solved by
increasing the number of sentinels per load generator.

7 Related Work
Central banks are experimenting with or launching CB-
DCs. Some [22, 23, 34, 65] use DLT [57, 63], but ac-
cording to their reports do not achieve as high perfor-
mance as Hamilton. Other CBDC work uses a parallelized
architecture; China’s e-CNY is currently in public tri-
als [24, 46, 62] and is a scalable system based on the
UTXO model, but does not support self-custody. The Eu-
rosystem has tested a CBDC design based on tracking
groups of bills using a set of parallelized blockchains [38].
While it achieves linear scalability, transactions involv-
ing multiple bills require external coordination. The Reg-
ulated Liability Network [29] presents a design which
claims to achieve 1M transactions per second with multi-
ple coordinated blockchains. However, they do not discuss
deployment across multiple geographic regions which is
vital for resiliency or provide latency measurements.

Chaumian eCash [26] and designs based on it [18, 20,
21] operate with a central trusted intermediary, but either
require maintaining an ever-growing list of all spent coins
for double spend prevention, or require users to manage
expiring coins, which has significant policy implications.
The Swiss National Bank [27] expands upon the Chau-
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mian ecash model using this technique.
Several central banks already support real-time gross

settlement (RTGS) and fast payment systems [5]. These
systems are designed to settle transactions between only
eligible financial institutions. In practice, these systems do
not handle a volume of traffic representative of a national
retail payment system, do not provide programmability,
nor provide access to the general public [6, 39, 40, 59].

Contrary to decentralized cryptocurrencies [53, 73] or
stablecoins [11, 25, 33, 67], Hamilton is designed to be ad-
ministered directly by the central bank or a related entity,
and transacts in central bank liabilities. However, Hamil-
ton borrows ideas from cryptocurrency designs; it uses
the UTXO transaction model, but only stores 32-byte
hashes [41]. Users cannot verify transaction execution
themselves since they cannot access the ledger or state
of the system. Techniques like authenticated datastruc-
tures [66] or cryptographic proofs of transaction inclu-
sion [55] might be able to help with this.

Newer consensus algorithms [30] achieve higher
throughput for agreement on ordering, and Hamilton
could benefit from these as a replacement for Raft. How-
ever, faster consensus does not address the scalability bot-
tleneck of state machine execution and validation in non-
sharded blockchain-based architectures. Our 2PC architec-
ture outperforms both our straw-man sharded blockchain
as well as existing sharded blockchains which aim to op-
erate in a decentralized setting, and thus cannot rely on a
trusted coordinator to drive the cross-shard commit proto-
col to completion [2, 31, 49, 77]. However, some of these
blockchains provide more features than Hamilton, like
general smart contracts.

Via careful choices in application transaction design
and format, Hamilton is able to avoid the need for reads or
any other transaction execution before commit time, and
can apply good ideas in traditional distributed transaction
commit protocols [1, 28, 68] in a simplified backend that
does not need to handle general transactions.

8 Conclusion
This work presents a high-performance, resilient transac-
tion processor for CBDCs. We support a range of potential
policy choices and can minimize data stored in the trans-
action processor while supporting a variety of custodial
models. Our experiments show that a blockchain-based
design for CBDC has seriously scalability limitations,
but by validating transactions in parallel we can achieve
millions of transactions per second.
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